If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+96=64x
We move all terms to the left:
8x^2+96-(64x)=0
a = 8; b = -64; c = +96;
Δ = b2-4ac
Δ = -642-4·8·96
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-32}{2*8}=\frac{32}{16} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+32}{2*8}=\frac{96}{16} =6 $
| -6y-y+2=58 | | 6-x/2=-5 | | -12=h/5-2 | | 4-(2x-3)=5x-17 | | 15(x+1)-1-7(x+9)=4x | | 3x+15=3x+10+5+x | | 321=3x | | 11h-8h+3h+2=20 | | 32f+170=394 | | -8x+4x+5=1 | | x.6x-1=2x+11 | | (6x-8)=46 | | 37=8a-3 | | 24-x=36-(3)x | | (6x-8)=48 | | a-5a-9=31 | | 24-x=36-(3) | | 66=-3(1-6n)+3(2n+7) | | (2x+5)=(4x+10)=(2x+5) | | 6h+8=4h-10 | | x+16=3x-7+5x | | 11d-2d+3=12 | | -5p+-2=5p-30 | | 34a+100=406 | | 1/3(3x+18)=17 | | -13+7x-3-2x=9 | | -2=6-8y | | -5x-45=5x+25 | | 7=f/3+4 | | 1.5x+13=-8.4 | | 70=(2/3)x+16 | | ∠=4x+7∠=2x+11 |